İyonlaşma Nedir? İyonize Atomlar Neden Daha Kararlıdır?

0

İyonlaşma, bir atomun elektron alarak veya vererek kararlı hale geçmesi olayıdır. İyonlaşma sonucunda oluşan moleküllere genel olarak iyon adı verilir. Daha spesifik olarak, elektron veren ve dolayısıyla pozitif bir yüke kavuşan atomlara katyon, elektron alan ve dolayısıyl negatif bir yüke kavuşan atomlara anyon denir. İyonlaşma kullanılarak oluşturulan bileşiklere iyonik bağlı bileşik denir.

İyonlaşma, atom altı parçacıklar, atomlar, moleküller ve iyonlarla çarpışma nedeniyle veya elektromanyetik radyasyonla etkileşim sonucunda yaşanabilir. Heterolitik bağ bölünmesi ve heterolitik ikame reaksiyonları da iyon çiftlerinin oluşumuna neden olabilir. İyonlaşma, uyarılmış bir çekirdeğin enerjisini iç kabuk elektronlarından birine aktararak çıkarılmasına neden olduğu dahili dönüşüm süreci ile radyoaktif bozunma yoluyla da meydana gelebilir.

Bir Atom Neden İyonlaşır?

Atomlar, enerjilerini en aza indirmeye çalışırlar ve bunu yapmanın tek yolu, elektronların bulunduğu orbitallerini, o orbitallerin taşıyabileceği maksimum elektronla doldurmaktır. Örneğin soygazlar, hâlihazırda bu şekilde kararlı oldukları için iyonlaşmazlar ve kolay kolay tepkimeye girerek bileşik oluşturmazlar. Ne var ki periyodik tabloda bulunan 118 element arasından sadece 6 tanesi (oganessonu da sayarsanız 7 tanesi) soygazdır. Diğer atomlar, soygazlar gibi kararlı hâlde değildir ve bu nedenle kararlı hale geçmek için oktet kuralı olarak bilinen bir doğa yasasına uyarlar.

Tüm Reklamları Kapat

Oktet kuralı, kısaca, bir atomun son katmanını değerlik elektron denen bir elektron yardımıyla doldurmasıdır. Örneğin bir katman en fazla 8 elektron taşıyabiliyorsa, o katmanında 8 elektron bulunduran atomlar oktet kuralına uymuş olurlar. Bu katmanların tam olarak nasıl çalıştığını merak ediyorsanız, buradaki yazımızı okuyabilirsiniz.

Atomlar, bu elektron doldurma sürecinde en kısa yolu tercih ederler. Yani 8 elektron alabilen o katmanda bulunan elektron sayısı 6 ise, bir atom 6 tane elektron vermek yerine 2 tane elektron almayı tercih ederler; çünkü bunlardan ikincisi, ilkinden çok daha az miktarda enerji değişimi gerektirir. Benzer şekilde, dış katmanlarında sadece 1-2 elektron bulunan atomlar, 6-7 tane elektron almaya çalışmak yerine, var olan 2 elektronlarını vermeye meyillidirler.

İşte bu nedenle periyodik tablonun sol tarafında bulunan metaller, elektron alarak ametallere yaklaşmak ve oktet kuralını tatmin etmek yerine, dış kabuklarında bulunan az sayıda elektronu diğer atomlara vererek, daha da sol tarafa doğru kayarak dengeli hâle ulaşırlar. Örneğin en dış kabuğunda 2 elektron bulunan bir metal olan kalsiyum elementi, 6 elektron alarak oktete ulaşmak yerine, o 2 elektronu vererek oktete ulaşır. O iki elektronu verdiğinde, +2 yüküne kavuşmuş olur. İşte buna iyonlaşma deriz.

İyonlaşma, oldukça vahşi bazı tepkimelere de sahne olur: Örneğin sodyum elementi, son katmanındaki 1 elektronu oldukça vahşi bir şekilde vererek bir katyona dönüşür ve Sodyum Patlaması denen bir olay nedeniyle, özellikle de hidrojen bulunan ortamlarda şiddetli bir şekilde patlar. Aşağıdaki kısa videoda bu olayı görebilirsiniz:

Tüm Reklamları Kapat

[embedded content]

Bir diğer örnek olarak, bir ametal olan klor elementini verebiliriz: 7A grubunda bulunan bir halojen olan klor, en dış kabuğundaki 7 elektronu birden vermeye çalışmak yerine, civardaki atomlardan 1 elektron almayı tercih edecektir. Klor, bu elektronu aldığında iyonlaşarak -1 yüküne kavuşur ve elektron düzeni, kendisine en yakın soygaz olan argon gazının dizilişine benzer hâle gelir.

İyonlaşma Enerjisi Nedir?

İyonlaşma Enerjisi (veya İyonizasyon Enerjisi) gaz haldeki bir atomun en dış katmanından bir elektron koparmak için o atoma verilmesi gereken minimum enerji miktarıdır. Periyodik tabloda sağdan sola doğru gidildikçe metalik özellik attığından ve elektron koparmak kolaylaştığından, iyonlaşma enerjisi de azalır. Periyodik tablonun metalik özelliği en çok olan grubu alkali metaller (1A grubu) olduğu için iyonlaşma enerjisi en az olan grup da alkali metallerdir. Yukarıdan aşağı doğru da metalik özellik arttığı için, periyodik cetvelde altlarda yer alan elementlerin iyonlaşma enerjisi daha düşüktür.

Alkali metallerin en alt kısmında bulunan element Fransiyum olduğu için iyonlaşma enerjisi en düşük element Fransiyum’dur yani Fransiyum en kolay iyonlaşan elementtir. Aynı şekilde periyodik tablonun en sağ tarafında bulunan grup Soygazlar (8A grubu) olduğu için iyonlaşma enerjisi çok çok yüksektir ve sadece özel şartlar altında bileşik yaptırılabilir (kovalent bağ dahil).

Tüm bu farklı iyonlaşma enerjilerini, atom numarasına göre bir grafiğe dökecek olursak, aşağıdaki grafiği elde ederiz:

Evrim Ağacı’ndan Mesaj

Elementlerin iyonlaşma enerjileri soygazlara dikkat edin kararlı yapılarından dolayı iyonlaştırmak için çok fazla enerji gerekir
Elementlerin iyonlaşma enerjileri soygazlara dikkat edin kararlı yapılarından dolayı iyonlaştırmak için çok fazla enerji gerekir

İyonik Bağ Neden Güçlüdür?

İyonik bağların sağlamlığı, atom yarıçapı ile ters orantılı, yük ile doğru orantılıdır: Yani bir atomun yarıçapı ne kadar büyükse, iyonik bağın gücü o kadar zayıftır. Öte yandan bir atom, oktet kuralını sağlamak için ne kadar fazla elektron alıp vermek zorundaysa, iyonik bağ da o kadar güçlü olur. Bir diğer deyişle, elektron alışverişi ne kadar çok gerçekleşirse, iyonik bağ o kadar sağlam olacaktır.

Ca+2 ve Mg+2 katyonlarının O-2 ile oluşturduğu iyonik bileşikte, magnezyumun oluşturduğu bileşik daha sağlamdır; çünkü Magnezyum’un atom yarıçapı daha azdır. Örneğin CaO bileşiğinin erime noktası 2613°C iken, MgO bileşiğinin erime noktası 2.852°C dir; çünkü iyonik bağ sağlamlaştıkça erime noktası da yükselmektedir.

Bazı bileşiklerin iyonik bağın sağlamlıkları
Bazı bileşiklerin iyonik bağın sağlamlıkları

Her ne kadar iyonik bağlar güçlü olabilseler de aynı zamanda bu şekilde oluşan iyonik kristaller oldukça kırılgandır. Dövülerek veya basınç uygulayarak şekilleri kolay kolay değiştirilemez. Kristallerde artı ve eksi iyonlar, en büyük çekme kuvvetini sağlayacak şekilde düzenlenmişlerdir. Bunlar üzerine basınç uygulandığında bu düzen bozulur ve birbirine doğru yaklaşan aynı yüklü iyonlar arasındaki itme kuvveti nedeniyle katı, kristal düzlemi adı verilen yüzeyler boyunca kırılır.

Örneğin sofra tuzu (sodyum klorür), NaCl formülüne sahip bir bileşiktir. Sodyumun oktet kuralına uyabilmek için fazladan 1 elektronu vardır; klorun ise 1 elektronu eksiktir. Bu iki element birbirlerini hemen dengelerler ve iyonik bağlı bir bileşik oluştururlar. İyonik bağlı bileşikler katı formdadırlar. Çözelti veya erimiş durumda elektriği iletirler, kaynama ve erime noktaları çok yüksektir. Eğer bir kısmını birazcık kıracak olursanız adeta “tuz buz olurlar” ve parçalanırlar. Bunun nedeni, atomlar kaydığı anda aynı yüklü kutupların bir araya gelip birbirlerini itmeleridir.

Sabit Oranlar Yasası ve İyonlaşma

Sabit Oranlar Yasası’na göre, tüm bileşiklerde atomlar arasında sabit bazı oranlar bulunmaktadır. Örneğin su molekülünde her zaman 2 hidrojen atomu için 1 oksijen atomu bulunmaktadır; yani oran 2:1 şeklindedir. Peki bu oran, iyonik bileşiklerde nasıl işlemektedir?

Elimizde 1 mol magnezyum ve 1 mol sülfür bulunduğunu varsayalım. Magnezyum, kararlı yapıya erişmek için 2 elektron vermelidir; sülfür ise kararlı yapıya dönmek için 2 elektron almalıdır. Eğer biz bu 2 elementi tepkimeye sokarsak, aralarında iyonlaşma gerçekleşir ve MgS denen bileşik oluşur. Çünkü bu elementlerin elektron ihtiyaçları birbirlerini bire bir (1:1) oranında dengelemektedir.

Tüm Reklamları Kapat

Peki ya elimizde 1 mol magnezyum ile 1 mol silisyum olsaydı ne olurdu ? Silisyumunun 4 elektron açığı vardır ve bunu kapatmak için bir magnezyumdan 2 elektron alır; ama bunu yaptıktan sonra da hala 2 tane elektron açığı kalacaktır. Magnezyumdan daha fazla elektron alamaz; çünkü magnezyum oktete dönmüş durumdadır. Bu nedenle yanına bir tane daha magnezyum atomu alır ve ondan da 2 tane elektron alarak kendini kararlı hale getirir. Bunun sonucunda, 1 mol magnezyuma 1 mol sülfür düşerken, 0.5 mol silisyum düşmektedir. Yani oran 2:1 şeklindedir.

Görülebileceği gibi iyonlaşma davranışı, Sabit Oranlar Yasası’nın öngördüğü oranları belirlemektedir. Bu nedenle kimyada iyonlaşma kritik bir yere sahiptir.

KAYNAK: EVRİM AĞACI

About The Author

Bir yanıt yazın

E-posta adresiniz yayınlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir